- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Colin, S (1)
-
Colin, S P (1)
-
Colin, S. P. (1)
-
Costello, J (1)
-
Costello, J H (1)
-
Costello, J. H. (1)
-
Dabiri, J O (1)
-
Dodge, K (1)
-
Gemmell, B (1)
-
Gemmell, B J (1)
-
Gemmell, B. J. (1)
-
Jaspers, C (1)
-
Kanso, E A (1)
-
Lucas, K (1)
-
Sutherland, K (1)
-
Sutherland, K. R. (1)
-
Tackett, K (1)
-
Townsend, J. P. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Scyphomedusae are widespread in the oceans and their swimming has provided valuable insights into the hydrodynamics of animal propulsion. Most of this research has focused on symmetrical, linear swimming. However, in nature, medusae typically swim circuitous, nonlinear paths involving frequent turns. Here we describe swimming turns by the scyphomedusaAurelia auritaduring which asymmetric bell margin motions produce rotation around a linearly translating body center. These jellyfish ‘skid’ through turns and the degree of asynchrony between opposite bell margins is an approximate predictor of turn magnitude during a pulsation cycle. The underlying neuromechanical organization of bell contraction contributes substantially to asynchronous bell motions and inserts a stochastic rotational component into the directionality of scyphomedusan swimming. These mechanics are important for natural populations because asynchronous bell contraction patterns are commonin situand result in frequent turns by naturally swimming medusae.more » « less
-
Townsend, J. P.; Gemmell, B. J.; Sutherland, K. R.; Colin, S. P.; Costello, J. H. (, The Biological Bulletin)
-
Jaspers, C; Costello, J; Sutherland, K; Gemmell, B; Lucas, K; Tackett, K; Dodge, K; Colin, S (, Limnology and oceanography)Despite its delicate morphology, the lobate ctenophore Mnemiopsis leidyi thrives in coastal ecosystems as an influential zooplankton predator. Coastal ecosystems are often characterized as energetic systems with high levels of natural turbulence in the water column. To understand how natural wind-driven turbulence affects the feeding ecology of M. leidyi, we used a combination of approaches to quantify how naturally and laboratory generated turbulence affects the behavior, feeding processes and feeding impact of M. leidyi. Experiments using laboratory generated turbulence demonstrated that turbulence can reduce M. leidyi feeding rates on copepods and Artemia nauplii by > 50%. However, detailed feeding data from the field, collected during highly variable surface conditions, showed that wind-driven turbulence did not affect the feeding rates or prey selection of M. leidyi. Additional laboratory experiments and field observations suggest that the feeding process of M. leidyi is resilient to wind-driven turbulence because M. leidyi shows a behavioral response to turbulence by moving deeper in the water column. Seeking refuge in deeper waters enables M. leidyi to maintain high feeding rates even under high turbulence conditions generated by wind driven mixing. As a result, M. leidyi exerted a consistently high predatory impact on prey populations during highly variable and often energetic wind-driven mixing conditions. This resilience adds to our understanding of how M. leidyi can thrive in a wide spectrum of environments around the world. The limits to this resilience also set boundaries to its range expansion into novel areas.more » « less
An official website of the United States government

Full Text Available